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Abstract

Automatic fusion of aerial optical imagery and untex-
tured LiDAR data has been of significant interest for gen-
erating photo-realistic 3D urban models in recent years.
However, unsupervised, robust registration still remains a
challenge. This paper presents a new registration method
that does not require priori knowledge such as GPS/INS in-
formation. The proposed algorithm is based on feature cor-
respondence between a LiDAR depth map and a depth map
from an optical image. Each optical depth map is gener-
ated from edge-preserving dense correspondence between
the image and another optical image, followed by ground
plane estimation and alignment for depth consistency. Our
two-pass RANSAC with Maximum Likelihood estimation in-
corporates 2D-2D and 2D-3D correspondences to yield ro-
bust camera pose estimation. Experiments with a LiDAR-
optical imagery dataset show promising results, without us-
ing initial pose information.

1. Introduction
Photo-realistic 3D scene representations are widely used

in aerial motion imagery systems, GIS, and other 3D map-
ping applications. For a large-scale 3D model of building
and terrain environments, LiDAR-based model acquisition
has recently received attention due to its robustness and cost
effectiveness, in comparison with manual 3D modeling. Li-
DAR approaches outperform multi-view stereo reconstruc-
tions in terms of accuracy, though multi-view stereo is also
cost effective for 3D model acquisition. One drawback in
this approach is that most LiDAR data does not provide
color or texture information; it requires further processing
such as LiDAR-optical imagery registration for a photo-
realistic textured model. The LiDAR-imagery registration
consists of determining the camera parameters (i.e., projec-
tion matrix) for each optical image, so that the image is pro-
jected onto the target LiDAR data.
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A number of registration algorithms have been proposed
in recent years; however, most approaches require initial
camera parameters from GPS and Inertial Navigation Sys-
tem (INS) information. Methods using 2D/3D line features
have difficulty in registering images that do not contain ob-
vious line segments. 3D-3D registration approaches are
costly to compute though they do not require initial cam-
era parameters. An inexpensive, unsupervised, robust, au-
tomatic registration algorithm that does not require prior
knowledge of structure or camera parameters is needed.

In this paper, we present a new approach to register
3D LiDAR data with 2D optical imagery. The proposed
method does not require initial camera parameters, but re-
quires two optical images used to generate a stereo depth
map. Instead of directly reconstructing a 3D model from
each stereo depth map (which is typically inferior to Li-
DAR data), we run feature correspondence between LiDAR
and stereo depth maps, in order to match a few of the most
distinctive features for correct registration. Our depth map-
based registration is an improvement over approaches that
rely mostly on certain types of geometric features (typically
line segments), and over approaches that use computation-
ally expensive 3D-3D registration.

To guarantee depth (brightness) consistency between Li-
DAR and stereo depth maps, ground plane estimation and
alignment are performed for oblique imagery. Ground
plane-based depth maps in which the brightness is based on
the height give more reliable feature correspondence. Our
proposed two-pass RANSAC scheme with Maximum Like-
lihood (ML) estimation accurately estimates camera param-
eters. We tested the proposed method with a LiDAR-optical
imagery dataset [8] covering Rochester, NY.

2. Related Work and Contribution
Previously published papers can be classified into two

categories; 2D-3D registration using object features; and
3D-3D registration using Structure from Motion (SfM).

A number of algorithms are based on 2D-3D registration
using feature detection from both 3D LiDAR and 2D opti-
cal imagery. The features are collected by detecting specific



points or regions of interest (e.g., building corners, facades)
and camera parameters are estimated so that the features
from LiDAR are consistent with those from 2D images,
given the camera pose. These algorithms start with initial
camera parameters, obtained most often from a GPS/INS
system, and then refine them.

Several papers focused on registration of ground-level
LiDAR and optical imagery [10, 11, 12, 17, 18, 25, 26]. The
algorithm of Lee et al. [10] detects vanishing points from
straight lines in both LiDAR and images, and then does pose
estimation by decoupling camera rotation and translation.
Stamos and Allen [17] used building facades to match rect-
angles. To compute an optimal camera transformation, Liu
and Stamos [11, 12] used features from vanishing point ex-
traction (at least two vanishing points) and a matching of the
2D features with 3D features in LiDAR data that maximizes
an overlap measure. They also proposed a user-interface
for texture mapping of 2D images onto 3D LiDAR data at
interactive rates [12]. Wang et al. [25] used a similar ap-
proach, relying on vanishing points. These methods are not
suitable for scenes where parallel lines to induce vanishing
points are not easily detectable. Yang et al. [26] used fea-
ture matching to register images from a hand-held camera
with range data or color imagery. Stomas et al. [18] im-
proved their previous algorithms by incorporating line seg-
ment matching.

There are several papers that register different types of
ground-level imagery. The algorithm of Troccoli and Allen
[21] uses shadow matching to register 2D images to a 3D
model. Kurazume et al. [9] used edge matching, and an
M-estimator to register laser-scanned ground-based objects
(e.g., a Buddha statue).

Similar techniques using feature matching to handle
aerial imagery have also been proposed. Frueh et al. [6]
used line segment matching to adjust initial camera param-
eters from GPS/INS by exhaustively searching camera po-
sition, orientation, and focal length. The method of Vasile
et al. [23] generates pseudo-intensity images with shad-
ows from LiDAR to match 2D imagery. Then camera pa-
rameters from GPS and camera line of sight information
are exhaustively estimated, similar to [6]. The algorithm
of Ding et al. [4] uses vanishing points for oblique aerial
imagery to extract features called 2D Orthogonal Corners
(2DOCs). Initial camera parameters are then refined using
M-estimator RANSAC. The algorithm of Wang and Neu-
mann [24] does line segment detection and matching, fol-
lowed by a two-level RANSAC to divide putative feature
matches into multiple groups. They introduced 3 Connected
Segments (3CSs) that they claimed are more distinctive than
2DOCs. Mastin et al. [15] gave a statistical approach using
mutual information between LiDAR and oblique optical im-
agery. The algorithm uses 3D-2D rendering of height and
probability of detection (pdet) attributes.

These 2D-3D approaches using feature detection have
several limitations. First, they do not work when LiDAR
data provide no camera information, due to their heavy de-
pendence upon initial camera parameters from GPS, INS,
compass, and other measurements. Also, they rely mainly
on line segments that are detected from buildings and other
man-made structures. Thus they are not suitable for images
that contain few specific line segments.

Another approach is based on 3D-3D registration using
SfM. Zhao et al. [27] proposed an algorithm that recon-
structs 3D geometry from video sequences and registers it
with LiDAR data using the Iterative Closest Point (ICP) al-
gorithm. Liu et al. [13] used SfM to generate a 3D point
cloud and registered it with LiDAR data. Methods in this
category do not typically require a priori knowledge such
as GPS/INS information. Compared to 2D-3D registration,
however, 3D-3D registration is more difficult and it also re-
quires more accurate 3D multi-view reconstruction.

The novelty of our approach lies in the characteristics
of our algorithm, that takes advantage of both approaches.
Like the 3D-3D registration approach, our method does not
require initial camera pose information. Thus our method
can be used for a wider set of scenes without GPS (e.g., in-
door images). A 2.5D depth map is a 2D projected raster
image with a color at each pixel indicating height above a
ground plane. Our feature correspondence between 2.5D
depth maps gives flexibility as well as less computational
cost, compared to 3D feature matching. With underlying
3D information in 2.5D LiDAR depth maps, the proposed
matching scheme uses two kinds of matching criterion by
incorporating 2D-2D and 2D-3D correspondences, which
increases the robustness of our approach. More importantly,
our method overcomes the limitations on the feature selec-
tion of the existing 2D-3D approaches by detecting any fea-
ture available in the imagery (e.g., vegetation).

In addition, we propose several techniques to improve
registration accuracy. The edge-preserving dense corre-
spondence used to generate stereo depth maps enables us to
detect as many distinctive features (at or near object bound-
aries) from the depth maps as possible, whereas many ex-
isting algorithms tend to excessively smooth out edges and
corners to suppress matching errors (mostly due to occlu-
sion and textureless regions). We also propose a robust two-
pass RANSAC scheme with a likelihood estimator that uti-
lizes two types of matching criterion (epipolar and projec-
tion constraints). The two-pass modified RANSAC allows
more accurate camera estimation, even in the case of a small
number of inliers with numerous outliers.

3. Algorithm
Now let us describe our novel automatic registration al-

gorithm for aerial LiDAR and optical imagery. For 3D Li-
DAR imagery, any LiDAR dataset where each point has an



x, y, and z value can be used. To generate stereo depth maps
from optical imagery, we assume intrinsic camera parame-
ters (e.g., focal length) are known. In the case of unknown
parameters, we estimate the information via camera calibra-
tion and pose estimation between the optical images.

The registration process starts by generating depth maps
from both LiDAR and optical imagery (Subsection 3.2).
Depth map stereo (feature correspondence) between two
depth maps gives a set of matched feature pairs, simplifying
the problem into 2D-3D correspondence (Subsection 3.3).
Then, a subsequent two-pass RANSAC is performed to es-
timate a camera matrix, along with removing a number of
outliers from the matched pairs (Subsection 3.4). We use a
modified RANSAC, known as MLESAC [20], which max-
imizes the likelihood of the correspondences between two
depth maps. Finally we use texture mapping from the opti-
cal image onto a triangulation of the LiDAR data to generate
a photo-realistic 3D model.

3.1. Model

The goal of the registration algorithm is to find a cam-
era projection matrix for each view of optical imagery so
that each optical image is properly mapped onto the LiDAR
model. In the depth map stereo stage, image features are
matched between a LiDAR depth map and a stereo depth
map from optical imagery. Since the LiDAR depth map
incorporates underlying 3D coordinates, the main problem
simply becomes 2D-3D correspondence. Let P, x, X de-
note, respectively, a camera projection matrix for an optical
image to be registered, a set of 2D homogeneous points in
the image, and a set of 3D homogeneous points. Our goal
is to find P such that,

x = PX (1)

where P is 3 × 4 matrix that involves intrinsic camera pa-
rameters (3× 3K matrix) and extrinsic camera parameters
(3 × 4 [R|t] matrix). The intrinsic camera parameters in-
clude focal length, principal point, skew, etc., specifying
the camera optics and sensor. The extrinsic camera param-
eters are decomposed into 3× 3 rotation matrix R (camera
orientation) and the translation column vector t (camera po-
sition). Then we want to find an optimal P such that the sum
of reprojection error is minimized as,

argmin
P

∑
i=1...n

di(xi,PXi) (2)

where n is the number of matched feature pairs, and d is
the reprojection error, the Euclidean distance (in pixels) be-
tween a 2D matched feature point and a reprojected point
from the corresponding 3D point. P can be found by us-
ing Direct Linear Transformation (DLT) with normalization
of the 2D image points, or iterative non-linear optimization
techniques such as Levenberg-Marquardt [7].

One challenge is that input data in the 2D-3D correspon-
dence (the matched feature pairs) is seriously corrupted by
numerous outliers, due to high ambiguity in the 2.5D fea-
tures. Thus, incorrectly matched pairs from the depth map
stereo stage should be properly filtered out. We present a
two-pass RANSAC approach that removes outliers using a
different criterion in each pass, which we discuss in Subsec-
tion 3.4. The original RANSAC [5] relies heavily on choos-
ing a distance threshold to determine inliers. In the case
of unknown distribution of outliers or too high a threshold,
the estimation works poorly. We therefore adopt a modi-
fied RANSAC estimator, MLESAC [20], to find a solution
that maximizes the likelihood of the correspondences. The
distance error (reprojection error) is represented as a mix-
ture model of the Gaussian and uniform distributions, with
respect to inlier and outlier costs. Assuming σ = 1 (in a
multivariate normal distribution), the likelihood that a given
matched pair at i is an inlier Prin,i is:

Prin,i = m
( 1√

2π

)2
exp

(−d2i
2

)
(3)

where m is the mixing number (in [0, 1]). Also the likeli-
hood that a given pair is an outlier Prout,i is:

Prout,i = (1−m)
1

ν
(4)

where ν is a pre-computed constant (maximum distance of
all point pairs in image domain). The mixing number m,
initially 0.5, is updated in an iterative manner using Expec-
tation Maximization (EM) such that:

m =
1

n

∑
i...n

Prin,i
Prin,i + Prout,i

(5)

Once m is determined from EM in each RANSAC iter-
ation, Prin,i in Equation 3 and Prout,i in Equation 4 are
computed again. The goal is to choose an optimal P that
minimizes the cost (maximizing the likelihood) through the
RANSAC iterations, which is represented as the negative
log likelihood:

−L = −
∑

i=1...n

log (Prin,i + Prout,i) (6)

Together with the projection constraint, we also use the
epipolar constraint in 2D-2D image correspondence be-
tween two depth maps. Given an estimated Fundamen-
tal matrix, its epipolar constraint determines the validity
of each matched pair, that is, a matched point should be
searched for along the epipolar line on which the reference
point is located. We use the epipolar constraint in the first
pass of our RANSAC scheme, followed by the projection
constraint in the second pass. See [7] for more details on
the Fundamental matrix and the epipolar constraint.
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Figure 1. An overview of our algorithm.

3.2. Depth Map Generation

3.2.1 LiDAR Depth Map

In the first stage, we generate 2.5D depth maps (height
maps) from both LiDAR and optical imagery. We first
construct a LiDAR mesh from the input LiDAR data us-
ing 2D Delaunay triangulation of the x and y coordinates
(Figure 1 (a)). Then a gray-scale color is assigned to each
vertex in the mesh, depending on the height value (z value
in the Rochester dataset [8]), which converts the mesh into
a height map. The color (brightness) assignment is relative
to the maximum and minimum height/elevation values, to
obtain a ground-based depth map. Then we create multiple
depth maps, each of which is rendered from a different cam-
era position and direction, having different occlusions (Fig-
ure 1 (b)). The reason for preparing multiple depth maps
is due to uncertainty of occlusions in each input optical im-
age. From our experiments, 4 − 8 LiDAR depth maps are
sufficient. Every pixel in each LiDAR depth map stores an
interpolated 3D point, which is later used for matching va-
lidity (Subsection 3.3) and 2D-3D correspondence (Subsec-
tion 3.4).

3.2.2 Stereo Depth Map

To create a depth map for each optical image, we perform
dense correspondence between the source image to be reg-
istered (Figure 1 (c)) and another target image which is
homography-warped to the source image (Figure 1 (d)),
with a baseline large enough to provide accurate correspon-
dences. In aerial imagery, we found that images separated
by between 5 and 22.5 degrees work best. The key point in
the dense correspondence is to preserve edges and other sig-
nificant features that give uniqueness of regions. To achieve
these goals, we have developed an edge-preserving dense
correspondence based on multi-resolution disparity propa-
gation and bilateral filters.

A dense disparity map is found by iterating over three

local operators: search, propagation and affine smoothing.
We define disparity as the vector difference between a pixel
in the source image and a corresponding pixel in the target
image. We use normalized cross correlation to measure the
fit of a disparity. Search finds the best match between a 5×5
pixel patch of the source image and neighboring patches
of the target image. Propagation refines the disparity at a
given pixel by propagating the disparities of neighboring
pixels in the source image. If using one of the neighbors’
disparity results in a better fit, the algorithm updates the dis-
parity of the pixel with that of the neighbor. The repeated
execution of these two steps effectively performs a walk
around the image to find a good match, without the need
to increase the size of the search or propagation patches.
These are similar to the search and propagation steps in
PatchMatch [1]. Affine smoothing fits an affine transforma-
tion to the disparities in a patch around each pixel. Unlike
PatchMatch, this operation keeps the disparities structured
and smooth. These three operators are iterated for a number
of times (10−20) or until the propagation converges to a so-
lution where there is no change in disparity, and is repeated
at multiple scales on a Gaussian pyramid of the image pair.
In order to guarantee depth discontinuities at or near object
boundaries (buildings), we introduce a bilateral filter [19]
for both the affine smoothing and propagation.

A depth map can be obtained from the disparity via
epipolar geometry estimation (Fundamental matrix) fol-
lowed by camera pose estimation (e.g. RANSAC with 8-
point algorithm [7]). In the case of oblique imagery, how-
ever, the depth map may have inconsistent brightness with
the ground-based LiDAR depth map. Depth (brightness)
consistency between two depth maps is critical in the fol-
lowing feature correspondence. In order to generate a
ground-based stereo depth map, we perform ground plane
estimation and alignment by finding a dominant plane of
the reconstructed scene using RANSAC-based plane fitting.
Then all the reconstructed 3D points together with the es-
timated camera pose are transformed so that the ground



plane is axis-aligned (xz-plane) where y-axis represents the
height. This axis-aligned reconstruction gives a ground-
based depth map that guarantees consistency of relative
brightness with LiDAR depth maps, as shown in Figure 1
(b) and (e).

3.3. Depth Map Stereo

Depth map stereo, not to be confused with the previous
stereo process to produce a depth map, consists of finding
a small set of the most distinctive feature correspondences
between two depth maps, in our case a LiDAR depth map
and the stereo depth map from an optical image pair (Fig-
ure 1 (f)). Given a depth map pair, we use sparse feature
matching, invariant to scale and orientation, such as Scale
Invariant Feature Transform (SIFT) [14] and Speeded Up
Robust Feature (SURF) [2]. We believe that an invariant
feature from 2.5D depth maps can be interpreted as a geo-
metric uniqueness in 3D. Our experiments show that 2.5D
depth map feature matching is robust if the brightness of the
depth maps are fairly consistent.

Experimenting with several algorithms, we found that
SURF offered fast, accurate matching and computational
flexibility. SURF also showed robustness against the rela-
tively assigned colors in LiDAR depth maps. Due to blurred
and obscured depth map images (compared to typical opti-
cal imagery), we adjust SURF parameters such as the num-
ber of pyramid octaves, the number of layers within each
octave, and the Hessian threshold to maximize the match-
ing accuracy. In particular, we use lower Hessian thresholds
(100− 200) to detect as many features as possible.

As discussed previously, multiple LiDAR depth maps of
the same region are generated. If there are n LiDAR depth
maps, we perform n depth map stereo processes for each
stereo depth map. The multiple LiDAR depth maps offer
several advantages. First, they overcome a potential oc-
clusion problem; some features from the stereo depth map
are possibly occluded in some of the LiDAR depth maps,
which may lead to incorrect matching. Second, they pro-
vides matching validity, that is, if a feature point in the
stereo depth map has inconsistent matched points in the Li-
DAR depth maps by checking the associated 3D points, it
is discarded. Third, it removes the need for manual initial
registration of the LiDAR and imagery and thus makes it
more appropriate for fully automated registration.

Two scenarios can be applied to this stage. One is to
apply 1 : n matching and extract valid matched pairs by
checking matching inconsistency, described above. These
matched pairs are used for 2D-3D correspondence. Another
scenario is to choose a LiDAR depth map that gives more
valid matched pairs than any other LiDAR depth map and
to perform depth map stereo between the stereo depth map
and the chosen LiDAR depth map. According to our exper-
iments, both scenarios have provided similar results.

Figure 2. Registration result pairs between two-pass RANSAC
(top) and two-pass MLESAC (bottom). The colors from the opti-
cal images were modified by lighting and shading in [3] to reveal
the LiDAR shapes.

3.4. Two-pass MLESAC

Because every LiDAR point has underlying 3D informa-
tion, the problem simply becomes 2D-3D correspondence.
One key issue is matching ambiguity, resulting in too many
outliers, probably due to insufficient texture and gradient
information in both depth maps. We therefore perform two-
pass MLESAC to acquire an optimal camera projection ma-
trix from such noisy matching data.

The previous depth map stereo incorporates 2D-2D
correspondence (2D feature matching between two depth
maps) and 2D-3D correspondence (using underlying 3D
points in the LiDAR depth map), which provides two types
of matching criteria (epipolar and projection constraints).
The first pass of the MLESAC uses the epipolar constraint
(distance to epipolar line) in 2D-2D correspondence. The
second pass uses the projection constraint (reprojection er-
ror) in 2D-3D correspondence, as discussed in Subsection
3.1.

As discussed earlier, MLESAC is more robust than
RANSAC against numerous outliers and an undetermined
distance threshold. Figure 2 shows two registration results
improved by MLESAC, in comparison with the results by
the conventional RANSAC. The number of RANSAC iter-
ations is 1000− 2000, and the number of EM iterations for
each of them is 2− 3.

Once a projection matrix for each stereo depth map is
estimated, we map the original image onto the LiDAR mesh
(Figure 1 (g)). In the case of multiple images mapping to
the same region, the colors can be a weighted average, with
weights depending on the normal of the LiDAR surface and
the viewing direction of each image.



Figure 3. Registration results. From left to right, the untextured 3D LiDAR model (height map), a manually registered 3D model, and a 3D
model generated by our registration process. Lighting and shading added, as in Figure 2.

Table 1. Quantitative evaluations of the LiDAR-imagery registra-
tion. In the first evaluation, nd, dm, and dr indicate the number of
manually labeled correspondences, the average reprojection error
using the manually estimated camera pose, and the average repro-
jection error of our estimated camera pose, respectively. In the
second evaluation, ns and sr are the number of total vertices and
the similarity (%), respectively.

nd dm dr ns sr

Site 01 12 0.99 3.84 286,954 89%
Site 02 13 0.84 1.75 340,277 93%
Site 03 12 1.42 4.21 349,779 88%
Site 04 13 1.53 2.95 340,640 90%
Site 05 10 1.58 1.77 193,241 89%
Site 06 12 2.13 1.27 152,664 93%
Site 07 18 0.83 5.06 288,416 91%
Site 08 13 0.69 1.07 267,886 92%
Site 09 12 0.93 2.67 239,878 91%
Site 10 12 1.10 2.68 187,154 93%

4. Experimental Results

To evaluate the effectiveness of the proposed algorithm,
we performed experiments with aerial LiDAR and opti-
cal imagery from [8], covering a portion of downtown
Rochester in NY (43.155◦ N, 77.606◦ W). The LiDAR
imagery covers approximately 2.5 km × 1 km, consisting
of 40 tiled LiDAR data files. Since each optical image
(1000 × 688) covers about 2 × 2 tiles, we combined 4 Li-
DAR data tiles into a single polygonal mesh so that one im-
age is registered with each mesh. In contrast to the LiDAR
data, optical imagery covers a much larger area. We there-
fore selected optical images (about 40 out of 681 images)
covering the area where LiDAR data was available.

For each site (2 × 2 tiles), we performed our registration
process in order to register a LiDAR mesh with an optical
image. In the depth map generation stage, we used Bundler
[16] to estimate a camera pose between the source optical
image to be registered and another target image.

Two quantitative evaluations were performed to measure
the quality and the correctness of the finally registered 3D
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Figure 4. The similarity (sr in Table 1) and the number of line
segments in each site (Site 01 - Site 10). Lines 1 and 2 indicate
salient line segments whose length is larger than 50 and 100 (in
pixels), respectively.

LiDAR model. Since no ground-truth information is pro-
vided, we instead generated a manually registered mesh
model. First we labeled 10 − 20 points in each LiDAR
depth map and then found their correspondences from the
optical image to be registered. Given the manually labeled
correspondences, a camera pose for the optical image is
computed. Figure 3 shows the original 3D LiDAR mesh
model without textures (a height map), the manually reg-
istered model, and the model by our automatic registration
process. Since the optical imagery is taken from almost di-
rectly above, the registered model does not provide details
in the building walls and other vertical textures.

The first evaluation is to compute the distance error of
our registration by reprojecting 3D points of the manually
labeled correspondences onto the optical image and by mea-
suring the pixel distance between the reprojected and the
manually labeled points, as shown in Table 1.

The next evaluation is to compute similarity between
the manually and the automatically registered mesh mod-
els. For each vertex in the mesh model, neighboring colors
in the optical image onto which the vertex is projected are
bilinearly interpolated. We then compute the mean of the
absolute color differences of all vertices between the two
mesh models (cr). The color similarity (sr in Table 1) is
1− cr, expressed as a percent.

We also measured the running time for each registra-
tion process. Each optical depth map generation using our



Figure 5. A registered 3D LiDAR mesh model of Rochester, NY [8]. Red color indicates no image information available in that area.

dense correspondence takes 130 secs, which needs to be
improved. The feature detection and matching (depth map
stereo) take 193 ms and 494 ms, respectively. The two-pass
MLESAC with 5000 iterations takes 276 ms.

The experiments show that our automatic registration
gives promising results in most regions, in comparison with
the manually registered ones. The reprojection errors us-
ing the automatically registered camera pose are slightly
larger than those using the manually estimated camera pose.
Yet the two mesh models are visually identical because the
mean color similarity is over 90%. Figure 5 shows sev-
eral screen shots of the final automatically registered 3D
textured model. Also, our registration approach recovers a
reasonably accurate camera pose even if no initial camera
information is provided, whereas most state-of-the-art al-
gorithms use an initial camera pose from GPS/INS for reg-
istration.

Furthermore, our method is suitable for regions in which
there is no man-made structure. Sufficient salient lines in
optical imagery are essential for most 2D-3D registration
algorithms discussed in Section 2. Regardless of line seg-
ments in optical imagery, our method is still effective, due

to the characteristics of the feature detection and matching.
Figure 4 shows another evaluation to measure the color sim-
ilarity (sr in Table 1; roughly representing registration ac-
curacy) and the number of salient line segments in each site.
We used a line segment detector [22] to detect salient line
segments. As shown in Figure 4, several sites containing a
lot of trees and bushes with few salient lines (e.g., site 05
and 06) are successfully registered.

The experiments also address potential errors in the man-
ual registration. The first evaluation indicates that repro-
jection errors using the manually registered model and its
camera pose are not negligible (dm in Table 1). Also, the
time-consuming manual registration is not as efficient as au-
tomatic registration. Nevertheless, a manual registration is
a useful tool to measure the accuracy of the algorithm in
the case of no ground-truth information, as has been shown
in previous literature [24]. One may visually examine the
quality of the registered model. However, choosing an ap-
propriate scoring metric is subjective and difficult. Also,
we observed a kind of circular gradient in the disparity and
depth maps from the optical imagery (see the brighter cen-
ter in Figure 1 (e)), which we think is related to a radial



distortion. One may need to undistort the optical images
or divide each image into multiple sub-images for which an
optimal camera pose is estimated. The errors in the manual
registration may also be related to this issue.

5. Conclusion
We have presented a novel registration method for aerial

LiDAR and optical imagery. Our approach is based on fea-
ture matching between 2.5D depth maps, utilizing 2D-2D
and 2D-3D correspondence. The proposed two-pass MLE-
SAC where each pass employs a different matching con-
straint provides an optimal camera pose, effectively remov-
ing a large number of outliers. Unlike existing 2D-3D regis-
tration approaches, the proposed algorithm does not require
initial camera parameters, but gives accurate, efficient reg-
istration results. This algorithm can be applied to different
registration problems such as a laser-scanned 3D face model
with 2D imagery.
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